
Evaluating the Fork-Awareness of Coverage-Guided Fuzzers

Marcello Maugeri1 a, Cristian Daniele2 b, Giampaolo Bella1 c and Erik Poll2 d

1Department of Maths and Computer Science, University of Catania, Catania, Italy
2Department of Digital Security, Radboud University, Nijmegen, The Netherlands

marcello.maugeri@phd.unict.it, cristian.daniele@ru.nl, giampaolo.bella@unict.it, erikpoll@cs.ru.nl

Keywords: Fuzzing, Fork, Security Testing, Software Security.

Abstract: Fuzz testing (or fuzzing) is an effective technique used to find security vulnerabilities. It consists of feeding a
software under test with malformed inputs, waiting for a weird system behaviour (often a crash of the system).
Over the years, different approaches have been developed, and among the most popular lies the coverage-based
one. It relies on the instrumentation of the system to generate inputs able to cover as much code as possible.
The success of this approach is also due to its usability as fuzzing techniques research approaches that do
not require (or only partial require) human interactions. Despite the efforts, devising a fully-automated fuzzer
still seems to be a challenging task. Target systems may be very complex; they may integrate cryptographic
primitives, compute and verify check-sums and employ forks to enhance the system security, achieve better
performances or manage different connections at the same time. This paper introduces the fork-awareness
property to express the fuzzer ability to manage systems using forks. This property is leveraged to evaluate 14
of the most widely coverage-guided fuzzers and highlight how current fuzzers are ineffective against systems
using forks.

1 INTRODUCTION

In the last years, plenty of fuzzers have been devel-
oped to deal with sophisticated software and nowa-
days it is extremely common that network systems
employ forks to deal with different connections at the
same time. This leads to 1) the need to devise accurate
and ad-hoc fuzzers and 2) the need to evaluate these
fuzzer according to their ability to cope with such ad-
vanced systems.

Unfortunately, as pointed out in (Hazimeh et al.,
2020), it is not easy to benchmark all of them
since the fuzzers are very different from each other.
Metzman et al. faced this problem by devising
FuzzBench(Metzman et al., 2021), an open-source
service for the evaluations of stateless fuzzers. Later,
Natella and Pham presented ProFuzzBench(Natella
and Pham, 2021), which similarly to FuzzBench pro-
vides a service to evaluate stateful fuzzers.

Although FuzzBench includes a sample of real
word programs and ProFuzzBench includes differ-
ent network systems (i.e. systems that often employ

a https://orcid.org/0000-0002-6585-5494
b https://orcid.org/0000-0001-7435-4176
c https://orcid.org/0000-0002-7615-8643
d https://orcid.org/0000-0003-4635-187X

forks to deal with multiple connections(Tanenbaum,
2009)), they do not evaluate the ability of the fuzzers
to cope with programs that use forks. Despite forks
representing the only way to create a new process
(Tanenbaum, 2009), experimental results have shown
that current fuzzers cannot deal with forked processes.

The existing approach merely relies on code mod-
ifications to remove the forks. Unfortunately, this ap-
proach goes against the willingness to reduce manual
work and improve automation during a fuzzing cam-
paign.(Boehme et al., 2021).

In this work, we explore and classify the limita-
tions current fuzzers exhibit in front of forking pro-
grams.

In summary, this paper:

1. devises a novel property capturing the ability of
fuzzers to deal with forks appropriately;

2. evaluates 14 coverage-guided fuzzers based on
this property;

3. proposes possible improvements to the current
state-of-the-art and future directions.

The paper is organised as follows. Section 2 describes
the relevant background, Section 3 presents our con-
tributions to knowledge, Section 4 shows the existing
approaches that try to cope with the fork problem and,



eventually, Section 5 discuss the results and propose
possible future directions.

2 BACKGROUND

2.1 Fuzz Testing

Fuzzing is an automated testing technique pioneered
by Miller et al.(Miller et al., 1990) in 1990 to test
UNIX utilities. As outlined in Figure 1, coverage-
guided fuzzing is composed at least of seed selection,
input generation and system execution.

1) Seeds Selection. The user must provide some
input messages (seeds) representative of some usual
inputs for the system.

2) Input Generation. The core of every fuzzer is
the generation of slightly malformed input messages
to forward to the software under test. A fuzzer is as
efficient as the generated inputs are able to break the
system. According to the approach used to generate
the messages, the fuzzers may be classified into:

• dumb: generate random strings (as the first fuzzer
(Miller et al., 1995) did);

• dumb mutational: blindly mutate seed messages
provided by the user;

• grammar-based: leverage the grammar of the sys-
tem to craft the input messages;

• smart mutational: (often called evolutionary) re-
quire a sample of inputs and leverage feedback
mechanisms to craft system-tailored messages.
An example of feedback mechanisms is the code
coverage feedback, explored in Section 2.2.

3) System Execution. Each execution of the fuzzer
involves three components:

• Bugs detector: it reports eventual bugs. The ma-
jority of the bugs detectors only report crashes,
however for many systems, also a weird deviation
from the happy flow of the protocol may represent
significant security issues;

• Hangs detector: it detects program execution
hangs;

• Code coverage detector: as further explained in
Section 2.2, the code coverage represents one of
the feedbacks the fuzzer leverages to improve the
quality of the input messages.

2.2 Coverage-Guided Fuzzing

Smart mutational fuzzers use feedback mechanisms
to steer the generation of the messages. Different

types of feedback mechanisms exist (Shahid et al.,
2011), and often different terms are used to express
the same idea. To avoid further noise, in this work
we use the term code coverage to express the lines of
code that are reached by a specific message.

Code coverage fuzzers need to recompile the code
with ad-hoc compilers (e.g. the AFL compiler) to in-
strument the code and obtain run-time information.

AFL (Zalewski, 2017), for example, instruments
the code to fill a bitmap that represents the lines of
the code covered by the inputs.

Later, it uses this bitmap to assign a higher score
to messages able to explore previously unseen lines of
code.

Start

Seeds selection I

Input
generation

System execution

Hangs
detector

Bugs
detector

Code
coverage
detector

Report O

End

Figure 1: Coverage-guided fuzzing process.

2.3 Inter-Process Communication

Operating systems provide system calls to perform
different tasks (e.g. writing and reading files, access-
ing hardware services, creating and executing new
processes). On UNIX systems, new processes are cre-
ated by using the fork system call(Tanenbaum, 2009).
In short, the first process, called parent process, gen-



erates a clone, called child process, that is an exact
copy of the parent process. After the fork, file de-
scriptors and registers are duplicated, thus a change
in one of the processes does not affect the other one.
Also, the parent and child process will follow sepa-
rate execution paths.

3 OUR CONTRIBUTION

This paper aims to understand how the state-of-the-
art coverage-guided fuzzers deal with software under
tests containing forks.

It was not obvious to come up with a way to com-
pare and contrast the various tools. We devised a
novel property, the fork awareness, that must be sat-
isfied when a fuzzer deals with forks effectively and
efficiently. As we shall see below, fork awareness
rests upon three aspects representing the ability to
deal with child processes.

Also, we evaluate the novel property over the
most widely used fuzzers from two benchmark frame-
works, reaching a total of 14 evaluated tools, 11
drawn from FuzzBench and 3 from ProFuzzBench.

3.1 Fork-Awareness

Abstractly, fork awareness insists that every fuzzer
should address the child process as the parent one.
During the system execution, the system monitor
should detect bugs or hangs regardless of their loca-
tion and the coverage should be measured also in the
child process. This is formalised through Definition 1.

Definition 1. A coverage-guided fuzzer is fork-aware
if it can detect bugs and hangs and measure coverage
in the same way for both the child and the parent’s
branch.

The three aspects in this definition are called:

[C.1] Child Bugs Detection: any anomaly is re-
ported also if it occurs in child processes;

[C.2] Child Hangs Detection: any infinite hang is
reported also if it occurs in child processes;

[C.3] Child Code Coverage: code coverage is mea-
sured also for child processes.

3.2 Example Challenges

We wrote three simple C programs to use as chal-
lenges for the fuzzers, namely to test whether the
fuzzers satisfy the aspects given above.

a) Bugs Detection Challenge:

1 if(fork()==0){ //Child process
2 raise(SIGSEGV); //Simulated crash
3 } else { //Parent process
4 wait(NULL); //Waiting child
5 //termination
6 }

The snippet sends a SIGSEGV signal to simulate
a bug in the child process. This signal is used to
report a segmentation fault, i.e. a memory access
violation, which is common in programs written
in low-level languages. The fuzzer must detect
this bug also after the parent’s termination.

b) Hangs Detection Challenge:

1 if(fork()==0){ //Child process
2 while(1){ ; } //Simulation of
3 //blocking code
4 }

The snippet simulates an infinite loop in the child
process. The fuzzers must report processes still in
execution after the loop and must kill child pro-
cesses at the end of the fuzzing campaign, avoid-
ing pending process executions.

c) Code Coverage Challenge:

1 pid_t pid = fork();
2 if(pid==0){ //Child process
3 if(data %2 == 0){ do_something(); }
4 else { do_something(); }
5 if(data %3 == 0){ do_something(); }
6 else { do_something(); }
7 if(data %5 == 0){ do_something(); }
8 else { do_something(); }
9 if(data %7 == 0){ do_something(); }
10 else { do_something(); }
11 }
12 else { //Parent process
13 wait(NULL); //Waiting child
14 //termination
15 }

This snippet simulates a child with several branches.
A fuzzer must cover and consider every child’s
branches.

We run the 14 fuzzers over these challenges and
organised the results in Table 1. We noticed that none
of the fuzzers succeeded through all three challenges.

3.3 Testbed

We decided to analyse only the coverage-guided
fuzzers present in FuzzBench (Metzman et al., 2021)
and ProFuzzBench (Natella and Pham, 2021) even
though the property applies to every coverage-guided
fuzzer. All fuzzers were executed on an Ubuntu 20.04
server machine and all our source codes are freely



Table 1: Coverage guided fuzzers evaluation.

Fuzzer Based on Monitor technique
Bugs

Detection
(C1)

Hangs
Detection

(C2)

Code
coverage

(C3)
AFL(Zalewski, 2017) - POSIX signals × × X

AFL++(Fioraldi et al., 2020) AFL POSIX signals × × X
AFLFast(Bohme et al., 2017) AFL POSIX signals × × X
AFLSmart(Pham et al., 2021) AFL POSIX signals × × X

Eclipser(Choi et al., 2019) AFL POSIX signals × × X
FairFuzz(Lemieux and Sen, 2018) AFL POSIX signals × × X
lafintel(Besler and Frederic, 2016) AFL POSIX signals × × X

AFLnwe1 AFL POSIX signals × × X
AFLNet(Pham et al., 2020) AFL POSIX signals × × X

MOpt-AFL(Lyu et al., 2019) AFL POSIX signals × × X

StateAFL(Natella, 2022) - AFL
- AFLNet POSIX signals × × X

LibFuzzer2 -
- UBSAN
- ASAN
- MSAN

X × X

Entropic(Bohme et al., 2020) LibFuzzer
- UBSAN
- ASAN
- MSAN

X × X

Honggfuzz3 - ptrace (Linux) X × X

available online4 so that our experiments are fully re-
producible.

3.4 Fuzzers Evaluation

We run all selected fuzzers against our three example
challenges. Table 1 summarises our findings.

All the fuzzers based on AFL use POSIX signals
and a bitmap respectively to report bugs and keep
track of the code coverage.

As shown in the Table 1, while the bitmaps are
able to keep track of the child’s code coverage, bugs
triggered in the child’s processes are not detected
since AFL catches signals from the main process
only, as pointed out in the documentation5. The only
fuzzers able to detect bugs in the child process are
LibFuzzer6, Entropic(Bohme et al., 2020) and Hong-
fuzz7, as discussed in more detail below:

• LibFuzzer 8 and Entropic(Bohme et al., 2020) em-
ploy a set of sanitizers9 to report bugs. These
mechanisms make the fuzzers able to find the

4https://github.com/marcellomaugeri/forks-break-afl
5https://github.com/google/AFL/blob/master/

README.md
6https://llvm.org/docs/LibFuzzer.html
7https://honggfuzz.dev/
8https://llvm.org/docs/LibFuzzer.html
9AddressSanitizer, UndefinedBehaviorSanitizer and

MemorySanitizer

bug in Challenge 1 and measure the different
code paths in Challenge 3, thereby satisfying chal-
lenges C.1 and C.3, as seen above. Unfortunately,
challenge C.2 is not satisfied since the fuzzer can-
not detect hangs in the child process.

• Honggfuzz supports different software/hardware
feedback mechanisms and a low-level interface to
monitor targets. When executed on Linux ma-
chines, Honggfuzz uses the ptrace system call to
manage processes. This mechanism allows the
fuzzer to capture a wide range of signals. As
shown in Table 1, the use of ptrace (along with
the SanitizerCoverage) allows the fuzzer to detect
bugs and to consider coverage also in the child
process. Unfortunately, neither this mechanism is
able to detect hangs in the child process.

In summary, while all selected fuzzers detect the code
coverage (C3), none detect hangs (C2) and only a few
detect bugs (C1) in the child process. The evaluation
underlines that:

• Loops detection challenge is the most difficult be-
cause fuzzers do not wait for all the child pro-
cesses but only for the main one;

• Code coverage challenge is the easiest because
the instrumentation allows measuring coverage
from the execution, regardless of the process in-
volved;

• Bug detection challenge depends on the technique

https://github.com/marcellomaugeri/forks-break-afl
https://github.com/google/AFL/blob/master/README.md
https://github.com/google/AFL/blob/master/README.md
https://llvm.org/docs/LibFuzzer.html
https://honggfuzz.dev/
https://llvm.org/docs/LibFuzzer.html


used to observe bugs, as well as the use of sanitis-
ers.

We interpret this general outcome as a clear call for
future research and developments.

4 EXISTING SOLUTIONS

Nowadays the only solutions to fuzz programs that
use forks are manually modifying the code or break-
ing the multi-process nature of the system (by em-
ploying tools like defork10) in order to get rid of the
forks.

Unfortunately, making modifications to the code,
as pointed out in the AFLNet documentation 11, to
remove all the forks is a challenging and error-prone
task and break the multi-process nature of the system
often leads to weird system behaviours. The only so-
lution, therefore, remains to modify the fuzzers.

5 CONCLUSIONS

This paper analyses the fork awareness of the
coverage-guided fuzzers using three different aspects.
The analysis conducted on 14 well-known fuzzers
highlights that while is it clear how important is to
handle multi-process programs, the majority of the
fuzzers overlook the problem. 11 of 14 fuzzers are
not able to detect bugs in the child process. The intu-
ition behind these outcomes is related to the way these
fuzzers detect bugs. All the AFL-derived fuzzers use
signals (SIGSEGV, SIGABRT, etc) to detect bugs and
this mechanism misses bugs in child processes. We
noticed that dealing with forks is not the only problem
and other issues may be related to the IPC scheduling.
For example, the IPC may influence the success of
the fuzzing process since some bugs may be triggered
only after a specific process schedule and only after
access to a particular cell of memory. We believe this
paper represents a first step towards the devising of
fuzzers aware of the eventual multiprocess nature of
the software. The first step to achieve this goal might
be the implementation of a loop detector at an early
stage, e.g. by leveraging a dynamic library to keep
track of all process identifiers of forked processes. To
summarise, this work not only provides the first con-
crete way to evaluate the fuzzers according to their
fork awareness but sheds light for the first time on a

10https://github.com/zardus/preeny/blob/master/src/
defork.c

11https://github.com/aflnet/aflnet

class of problems that have been ignored until now,
showing interesting future directions.

REFERENCES

Besler and Frederic (2016). Circumventing fuzzing road-
blocks with compiler transformations. https://lafintel.
wordpress.com.

Boehme, M., Cadar, C., and Roychoudhury, A. (2021).
Fuzzing: Challenges and reflections. IEEE Softw.,
38(3):79–86.

Bohme, M., Manes, V. J., and Cha, S. K. (2020). Boosting
fuzzer efficiency: An information theoretic perspec-
tive. In Proceedings of the 28th ACM Joint Meeting on
European Software Engineering Conference and Sym-
posium on the Foundations of Software Engineering,
pages 678–689.

Bohme, M., Pham, V.-T., and Roychoudhury, A.
(2017). Coverage-based greybox fuzzing as markov
chain. IEEE Transactions on Software Engineering,
45(5):489–506.

Choi, J., Jang, J., Han, C., and Cha, S. K. (2019). Grey-box
concolic testing on binary code. In 2019 IEEE/ACM
41st International Conference on Software Engineer-
ing (ICSE), pages 736–747. IEEE.

Fioraldi, A., Maier, D., Eißfeldt, H., and Heuse, M. (2020).
Afl++: Combining incremental steps of fuzzing re-
search. In 14th USENIX Workshop on Offensive Tech-
nologies (WOOT 20).

Hazimeh, A., Herrera, A., and Payer, M. (2020). Magma:
A ground-truth fuzzing benchmark. Proceedings of
the ACM on Measurement and Analysis of Computing
Systems, 4(3):1–29.

Lemieux, C. and Sen, K. (2018). Fairfuzz: A targeted muta-
tion strategy for increasing greybox fuzz testing cov-
erage. In Proceedings of the 33rd ACM/IEEE Interna-
tional Conference on Automated Software Engineer-
ing, pages 475–485.

Lyu, C., Ji, S., Zhang, C., Li, Y., Lee, W.-H., Song, Y.,
and Beyah, R. (2019). {MOPT}: Optimized muta-
tion scheduling for fuzzers. In 28th USENIX Security
Symposium (USENIX Security 19), pages 1949–1966.

Metzman, J., Szekeres, L., Maurice Romain Simon,
L., Trevelin Sprabery, R., and Arya, A. (2021).
FuzzBench: An Open Fuzzer Benchmarking Platform
and Service. In Proceedings of the 29th ACM Joint
Meeting on European Software Engineering Confer-
ence and Symposium on the Foundations of Soft-
ware Engineering, ESEC/FSE 2021, pages 1393–
1403, New York, NY, USA. Association for Comput-
ing Machinery.

Miller, B. P., Fredriksen, L., and So, B. (1990). An empiri-
cal study of the reliability of unix utilities. Communi-
cations of the ACM, 33(12):32–44.

Miller, B. P., Koski, D., Lee, C. P., Maganty, V., Murthy, R.,
Natarajan, A., and Steidl, J. (1995). Fuzz revisited: A
re-examination of the reliability of unix utilities and
services. Technical report, University of Wisconsin-
Madison Department of Computer Sciences.

https://github.com/zardus/preeny/blob/master/src/defork.c
https://github.com/zardus/preeny/blob/master/src/defork.c
https://github.com/aflnet/aflnet
https://lafintel.wordpress.com
https://lafintel.wordpress.com


Natella, R. (2022). Stateafl: Greybox fuzzing for state-
ful network servers. Empirical Software Engineering,
27(7):191.

Natella, R. and Pham, V. T. (2021). Profuzzbench: A bench-
mark for stateful protocol fuzzing. In ISSTA 2021 -
Proceedings of the 30th ACM SIGSOFT International
Symposium on Software Testing and Analysis, pages
662–665. Association for Computing Machinery, Inc.

Pham, V.-T., Böhme, M., Santosa, A. E., Căciulescu,
A. R., and Roychoudhury, A. (2021). Smart greybox
fuzzing. IEEE Transactions on Software Engineering,
47(9):1980–1997.

Pham, V.-T., Bohme, M., and Roychoudhury, A. (2020).
Aflnet: a greybox fuzzer for network protocols. In
2020 IEEE 13th International Conference on Software
Testing, Validation and Verification (ICST), pages
460–465. IEEE.

Shahid, M., Ibrahim, S., and Mahrin, M. N. (2011). A study
on test coverage in software testing. Advanced Infor-
matics School (AIS), Universiti Teknologi Malaysia,
International Campus, Jalan Semarak, Kuala Lumpur,
Malaysia.

Tanenbaum, A. (2009). Modern operating systems. Pearson
Education, Inc.,.

Zalewski, M. (2017). American fuzzy lop. https://lcamtuf.
coredump.cx/afl/.

https://lcamtuf.coredump.cx/afl/
https://lcamtuf.coredump.cx/afl/

