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Abstract. Fuzzing is a widely adopted technique for automated vulner-
ability testing due to its effectiveness and applicability throughout the
Software Development Life Cycle. Nevertheless, applying fuzzing “out of
the box” to any system can prove to be a challenging endeavour. Conse-
quently, the demand for target-specific solutions necessitates a substan-
tial amount of manual intervention, which diverges from the automated
nature typically associated with fuzzing. For example, prior research
identified the lack of a solution for testing multi-process systems effec-
tively. The problem is that coverage-guided fuzzers do not consider the
possibility of having a system with more than one process. In this paper,
we present Forkfuzz, a “fork-aware” fuzzer able to deal with multi-process
systems. To the best of our knowledge, Forkfuzz is the first fork-aware
fuzzer. It is built on top of Honggfuzz, one of the most popular and effec-
tive coverage-guided fuzzers, as reported by the Fuzzbench benchmark.
To show its effectiveness, we tested our fuzzer over two classical pro-
gramming problems: the Dining Philosophers Problem and a version of
the Producer-Consumer Problem where the consumer (the child) process
crashes for specific inputs. Furthermore, we evaluated Forkfuzz against a
real and more complex scenario involving an HTTP server that handles
multiple connections through multiple processes. The results of our eval-
uation demonstrate the effectiveness of Forkfuzz in identifying crashes
and timeouts. Finally, we discuss possible improvements and challenges
for the development and application of fork-aware fuzzing techniques.

Keywords: fuzzing · automated vulnerability testing · multi-process
system · security testing · concurrent programming

1 Introduction

Fuzzing is currently considered a standard technique, within the larger security
testing process, to achieve software correctness. The concept is quite straight-
forward: it involves the repetitive execution of a SUT (System-Under-Test) with
various inputs, including malformed ones, in order to uncover bugs [14]. In par-
ticular, fuzzing excels at identifying critical bugs such as crashes and timeouts,
which play a pivotal role in vulnerability analysis. These observable anomalies
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serve as indicators of potential weaknesses in software. Given that bugs are an
intrinsic aspect of program code, the significance of fuzzing in the software de-
velopment landscape is undeniable. Its substantial potential lies in its ability
to enhance software reliability and security for the future [24]. However, various
challenges lie at the horizon of fuzzing. Notably, tailoring fuzzing to multi-process
systems is still daunting at present, and our research stands on the observation
that modern coverage-guided fuzzers, albeit generally powerful, may not suc-
ceed in capturing misbehaviour in child processes. This limitation is known as
the “fork-awareness” problem [15], where the fuzzer may not properly account
for the behaviour of child processes hence for the potentially undiscovered bugs
in the overall system.

In this study, we present Forkfuzz, a new fuzzer to tackle the problem outlined
above. Based on Honggfuzz 3, it seems fair to argue that Forkfuzz is the first
fork-aware coverage-guided fuzzer. Forkfuzz leverages the ptrace system call4 to
monitor child processes and maintains a set of process identifiers to keep track
of them. Forkfuzz is first demonstrated on two classical concurrency problems:
the Dining Philosophers Problem (DPP) and the Producer-Consumer Problem
(PCP). As a practical test case, we then execute Forkfuzz on a distributed, open-
source project delivering a web server that handles multiple connections through
the use of multiple processes.

Overall, our experiments demonstrate the ability of our fuzzer to effectively
identify vulnerabilities in complex, multi-process systems. It is worth noting
that these experiments are reproducible as both the code of our fuzzer and the
experiment code are available as open source 5. Intentionally, all of our case
studies feature bugs of varying nature, so that our tool can be widely evaluated,
ultimately offering a solid baseline for further developments and applications.

The article is structured as follows. Section 2 presents the background, Sec-
tion 3 describes notable and related works in the state-of-the-art. Section 4
provides an overview of the overall scenario and explains the fork-awareness
property at the foundation of this study. Section 5 presents the first fork-aware
fuzzer, Forkfuzz, evaluated on three different case studies described in Section 6.
Finally, Section 7 discusses limitations and future directions while the last section
summarises the key findings.

2 Background

In Computer Science, a process is an instance of a computer program executed
by the Central Processing Unit (CPU) [25]. Essentially, every running program
is a process. Each process is associated with the address space, a list of memory
locations that contain the executable program, its stack and data. In addition,
every process has registers, open files, and signals. Furthermore, each process

3 https://github.com/google/honggfuzz
4 https://man7.org/linux/man-pages/man2/ptrace.2.html
5 https://github.com/marcellomaugeri/forkfuzz

https://github.com/google/honggfuzz
https://man7.org/linux/man-pages/man2/ptrace.2.html
https://github.com/marcellomaugeri/forkfuzz
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has its unique identifier, called Process ID or pid, which helps to distinguish
between different processes.

Sometimes, multiple processes may need to work together to achieve a com-
mon goal. Henceforth, this work will refer to such a scenario as a system. For
example, a web server may spawn multiple processes to handle incoming client
requests [9]. Each process would be responsible for serving a subset of the re-
quests, and they would communicate with each other to ensure that all requests
are handled efficiently.

In a similar scenario, the web server must be capable of spawning processes
as needed. In UNIX systems, new processes can be created by invoking the fork
system call. This system call creates a new process, called the child process,
which is an exact copy of the process that made the call, also known as the
parent process. The primary distinction between the two is their pid. After the
fork, both processes go their separate ways and accomplish their respective tasks,
possibly fork again, e.g. when the server receives a new request.

It should be noted that parent and child are still associated with each other
and form a process hierarchy. In UNIX, a process and its descendants form a pro-
cess group. The primary use of a process group is to facilitate the management of
multiple processes simultaneously. For example, a process could simultaneously
send signals to all processes within its group. This applies when all processes in a
web server are notified when the configuration file is updated. Another example
regards a process within the group that encounters an error. In such cases, the
affected process could send a signal to other processes in the group to notify
them of the issue. Then, the other processes can take appropriate measures to
mitigate the problem.

When mitigation is not accomplished correctly, or worse, is not even consid-
ered, the bug causes the program to behave unexpectedly or incorrectly. Con-
sequently, the bug can result in a vulnerability that a malicious attacker can
exploit to gain unauthorised access, steal data or disrupt the system. There-
fore, it is essential to identify and mitigate bugs using secure coding practices,
debugging and testing. In particular, debugging involves identifying and fixing
errors and anomalies in the system. On the other hand, testing is validating the
functional requirements, performance, and security of a system.

One way to debug a process is to use the ptrace system call. ptrace allows a
process to trace the execution of another process. With ptrace, a process called
“tracer” can inspect and modify the memory, registers, and system calls of the
“tracee” process. This feature is handy for debugging since it allows developers
to monitor the behaviour of a process and identify issues. As a result, it can
be used for building up sophisticated tools for analysing and testing software,
such as debuggers, dynamic analysers, and fuzzers. Additionally, ptrace can in-
ject code into a process or modify its behaviour, making it a powerful tool for
vulnerability research and exploitation. For instance, ptrace is used in Honggfuzz
as the interface to monitor processes during the fuzzing campaign under Linux
and NetBSD.
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Honggfuzz is a popular fuzzer developed by Robert Święcki that uses coverage-
guided fuzzing to perform automated software testing. In common with many
coverage-guided fuzzers, it repeatedly executes a SUT with various inputs, known
as test cases, to trigger unexpected or erroneous behaviour. Specifically, test cases
are generated by applying random mutations on valid inputs provided by the
tester, known as seeds. While the program runs, Honggfuzz monitors code cover-
age using instrumentation and generates new test cases based on the feedback it
receives. This process continues until a bug is found or a predetermined number
of iterations is reached [12].

3 Related work

The field of fuzzing has seen a lot of developments in recent years, with a wide
range of fuzzing tools available for various purposes. One major approach to
fuzzing is coverage-guided fuzzing, which leverages the code coverage reached
during the execution to steer the generation of new inputs to explore deeper
areas of the code.

Among the coverage-guided fuzzers, American Fuzzy Lop (AFL)6 and its
successor AFL++ [7] have emerged as an effective fuzzer for finding vulnerabil-
ities and have been the basis for the development of other fuzzers [8,13,21,17].
Unfortunately, the mechanism that AFL++ uses to deal with the SUT makes it
difficult to handle multiple processes. Making AFL++ fork-aware would mean
modifying the core of the fuzzer allowing it to capture the process creation and
termination. In particular, AFL++ uses control pipes to communicate with the
parent process of the SUT ignoring the existence of other processes.

On the contrary, Honggfuzz [23] uses the ptrace system call to monitor all the
processes, making it manageable to integrate mechanisms to monitor timeouts
and crashes also in the child processes. The ptrace system call has inspired
the creation of several debugging tools [11] such as gdb and ltrace, as well as
more complex dynamic analysis tools such as DroidTrace [27], which leverage its
capabilities to monitor and control the execution of an Android app.

Another example is strace, which is used to monitor system calls made by a
process and can also be used to monitor child processes. Actually, it has inspired
the development of MoonShine [20] framework which leverages strace to collect
execution traces of an application and then applies a trace distillation algorithm
to identify the most promising seeds for a fuzzing campaign. The most promising
seeds are then fed to Syzkaller7, a state-of-the-art evolutionary fuzzer for the
Linux kernel, to conduct a thorough fuzzing campaign.

Intercepting library calls is an approach to modify application behaviour,
enabling runtime instrumentation and monitoring. Dynamic linking enables in-
tercepting functions in shared libraries before application calls. This technique
is employed by various tools, including the Preeny project, offering dynamically
linkable libraries to modify the SUT behaviour. For instance, the defork module
6 https://github.com/google/AFL
7 https://github.com/google/syzkaller

https://github.com/google/AFL
https://github.com/google/syzkaller
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intercepts the fork calls, making them ineffective. While the use of the defork
module can disable the functionality of fork() and prevent the creation of child
processes, it can also disrupt the parallelism of processes in the system, lead-
ing to a linear flow of execution. This may not be desirable in scenarios where
concurrency is required for the system to function efficiently and correctly.

To address specific requirements as the aforementioned, testers often resort
to adopting a specialised component known as a harness. The harness serves
as a custom-coded solution that is meticulously crafted according to the specific
SUT. Its primary purpose is to preserve the intended functionalities and validate
for potential errors. However, it is important to note that the development of a
harness entails considerable manual effort. This includes not only the creation
of the harness itself but also the design process that requires a comprehensive
understanding of the inner workings of the SUT. This stands in contrast to the
ongoing research in the field of fuzzing, which aims to enhance the automation
and user-friendliness of fuzzing techniques across various scenarios [2].

In particular, when dealing with concurrent software, preserving the abil-
ity to run multiple processes or threads in parallel is crucial to maintain the
functionalities of a system. To address this challenge, researchers have devel-
oped fuzzers specifically tailored for testing concurrent systems. Two notable
examples are ConFuzz [19] and CONZZER [10]. ConFuzz uses assertions in con-
current OCaml programs to detect new program schedules and paths, leading to
assertion failures. In contrast, CONZZER provides a more general solution by
exploring thread interleavings and detecting hard-to-find data races. Further-
more, Muzz [3] represents another notable contribution to the field of thread-
awareness. This fuzzer takes into account various thread interleavings resulting
from the scheduler, enabling the detection of concurrency vulnerabilities and
bugs. However, these fuzzers are suitable to detect concurrency bugs in multi-
threaded systems only and are not designed for detecting bugs in multi-process
systems.

4 Motivational Scenario

The study introduces a scenario that involves a software system S. At the outset
of S, its first process P0 begins its execution. At a particular stage, it could
initiate the fork system call. As a result, the call creates an identical copy of
P0, named P1. Following this, both P0 and P1 run independently. After, both
P0 or P1 could possibly fork again, resulting in a new process P2, P3 or, more
generally, Pi.

To exemplify this scenario, Figure 1 illustrates a web server as an example. In
this setup, the primary server process, denoted as P0, plays the role of receiving
incoming requests. When a client sends a request, P0 invokes the fork system
call to create a new worker process, represented as Pi. Pi is then responsible for
handling the request from the client. When fuzzing such a sophisticated system,
the implications are various.
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Fig. 1. Example of a forking server

First, Pi is prone to encountering bugs while handling the request. For ex-
ample, suppose the server expects a request with a specific format or content,
but a malicious client sends a request with a completely different format or with
invalid data. If the server is not designed to handle the request and does not have
proper input validation and error-handling mechanisms, it may crash or behave
unpredictably. Consequently, to effectively fuzz-test a system, it is crucial to
use a fuzzer that detects bugs regardless of the process involved, as depicted in
Figure 2.

Fig. 2. Fuzzer capturing bugs from a child process

Second, capturing the cumulative code coverage of every process Pi plays
a pivotal role in effectively fuzzing S. This well-established mechanism enables
the fuzzer to generate new inputs that can uncover uncharted parts of the code,
thereby enhancing the likelihood of uncovering previously undetected vulnera-
bilities.

Thirdly, it is essential to address the potential impact of a maliciously crafted
request, which has the capability to instigate a denial-of-service scenario. When
such an attack occurs, the performance of the server may be severely affected,
leading to unresponsiveness or a significant slowdown [26]. Consequently, the exe-
cution time of processes can be prolonged beyond the expected limits, potentially
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triggering a timeout condition. This detrimental outcome not only diminishes
the overall user experience but also poses a significant risk of revenue loss for
the affected organisation.

These three considerations described can be applied to any process in the
system, resulting in the definition of the “fork-awareness” property. This property
refers to the ability of a fuzzer to test each process of an entire system in the same
manner. In other words, a “fork-aware” fuzzer should be able to: detect bugs,
timeouts and code coverage from all the processes under test [15]. Consequently,
such a fuzzer would thoroughly and accurately test the system for potential bugs
and vulnerabilities.

The impact of this work lies in the importance of the fork system call as a
widely used pattern in many software systems. The ability to spawn new pro-
cesses and run them independently is crucial for the efficiency and scalability
of many applications, such as servers and operating systems. Moreover, in op-
erating systems, the fork system call is essential for creating new processes and
managing resources, enabling the system to run multiple applications concur-
rently.

Another example of the use of fork is for creating daemon processes, back-
ground processes that continuously run and perform tasks, usually by forking a
new process and letting the parent process exit.

Overall, the use of fork is a well-established pattern in systems programming
and provides an efficient way to create new processes that run independently
of the parent process. As an illustration, a simple search for fork() on GitHub
Search8 returns over 500,000 C or C++ files, indicating the prevalence and
importance of the fork system call in modern software development.

Understanding the implications of fork, particularly in the context of fuzz
testing, is crucial for developing effective testing strategies that can detect bugs
and vulnerabilities in complex systems. Building upon this concept, we have
developed Forkfuzz and its corresponding workflow, which will be presented in
the next section.

5 Forkfuzz

The workflow of Forkfuzz follows quite the same as Honggfuzz. To simplify the
description, it can be dissected into three steps: setup, execution and termina-
tion as shown in Figures 3, 4, 5 and 6. In the figures, the novel contribution is
highlighted in blue.

5.1 Setup step

First, Forkfuzz parses command line arguments and opens necessary files such
as a dictionary of keywords or other interesting byte sequences, as well as a

8 https://github.com/search?q=fork%28%29+%28language%3AC+OR+language%
3AC%2B%2B%29&type=code

https://github.com/search?q=fork%28%29+%28language%3AC+OR+language%3AC%2B%2B%29&type=code
https://github.com/search?q=fork%28%29+%28language%3AC+OR+language%3AC%2B%2B%29&type=code
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file containing a set of valid inputs for the SUT. Additionally, it prepares the
signal handler for managing the fuzzing threads and constructs the required data
structures, such as the coverage map, to manage the fuzzing campaign.

Fig. 3. Setup step

To keep track of all the processes active on the system during fuzzing, it is
necessary to store their identifiers. To achieve this, we defined a novel set data
structure PIDS. The PIDS set contains an array of type pidt and its length.
The pidt type is a built-in data type in C that represents a process identifier.
After the fuzzer initialisation, the target initialisation begins.

First of all, the fuzzer generates the test case mutating the seeds. This test
case is then passed to the System Under Test (SUT ) as an argument, either
through standard input or via a socket using the Netdriver module9. The SUT
execution will happen in a process called Tracee, which is created by forking the
main process of Forkfuzz, named Tracer. Note that Tracer and Tracee naming
follow the ptrace nomenclature.

Before the actual execution of the SUT, the Tracee performs two important
operations:

– it sets up a new process group using the setsid() function;

9 https://github.com/google/honggfuzz/tree/master/libhfnetdriver

https://github.com/google/honggfuzz/tree/master/libhfnetdriver
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– sets itself as traceable by setting the PR_SET_DUMPABLE flag.

By instantiating a new process group, it is possible to keep track of all descendant
processes at once. Moreover, by enabling the PR_SET_DUMPABLE flag, the
process becomes attachable by the ptrace system call. After that, the Tracee
blocks by raising a SIGSTOP signal in order to wait for also the Tracer to be
ready to start.

Meanwhile, the Tracer records the identifier pid0 of the new process in the
PIDS set and starts tracing it with ptrace. Next, the Tracer sends a SIGCONT
signal, allowing the Tracee to resume execution. The next step for Tracee is to
call the exec function on the SUT with the test case generated earlier. At this
point, the Tracee image is replaced with the SUT and the actual test begins.

5.2 Execution step

With the help of ptrace, the fuzzer is able to trace and monitor the events that
occur while the SUT is running. The Tracer continuously performs the waitpid
function over the process group previously set to capture events. When one of
the SUT processes stops, it means that something occurred, hence, an event
happened. Then, the fuzzer analyses the event to determine its nature.

Fig. 4. Fork event tracing

Forkfuzz can handle two events: the invocation of two system calls - fork and
exit. The fork() system call is captured using the PTRACE_EVENT_FORK
option, allowing the Tracer to capture the identifier pidi of the new process,
add it to the PIDS set, and resume theSUT execution by sending a SIGCONT
signal. Notably, the option also allows the fuzzer to start tracing the newly forked
process automatically and looks for events that occur within it.

Additionally, if a process calls exit(), the pidi of the calling process is removed
from the PIDS set. If pidi has terminated its execution in an unexpected man-
ner, it raised a signal, which will be reported as a crash. In either case, the
execution of the SUT resumes by sending a SIGCONT signal. These two steps
are crucial for tracking all processes throughout their entire life cycle.
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Fig. 5. Exit event tracing

5.3 Termination step

After tracing all the descendant processes, Forkfuzz waits for all of them to
finish executing. If all the processes conclude the execution within the specified
time limit, i.e. the PIDS set empties before the timeout expires, the run ends
successfully. However, if at least one process remains active at the end of the
time slot, Forkfuzz reports the run as a timeout and kills all pending processes.

In addition, it succeeds to notify the tester which process went into a time-
out exactly, since it is still inside PIDS. This operation ensures that Forkfuzz
can detect and report all bugs and vulnerabilities, even in complex systems with
multiple processes. Without this operation, Forkfuzz would risk leaving some
pending processes running indefinitely, potentially missing critical bugs or caus-
ing system instability, as AFL++ and other fuzzers do. Therefore, the ability of
Forkfuzz to track and handle process termination is the core of the fuzzer since
it can effectively fuzz multi-process systems.

To test the capabilities of the fuzzer, we carried out a series of evaluations
using different case studies. The findings from these experiments are presented
in the next section, along with a detailed analysis of the results.

6 Evaluation

We evaluated the effectiveness of Forkfuzz through a series of experiments on:

1. The Dining Philosophers Problem (DPP)
2. A bug-injected version of the Producer-Consumer Problem (PCP) in which

the consumer, executed in a child process, crashes for specific inputs.
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Fig. 6. Termination step

3. A Web Server that employs a Fork-Based Process Model to handle multiple
connections. In this scenario, the server invokes the fork() system call to
create a new process for each incoming connection, which presents a more
complex and realistic use case for Forkfuzz.

The idea is to demonstrate the effectiveness of Forkfuzz on classical and
realistic problems. In fact, the two classical problems presented have been chosen
to evidence two possible and simple scenarios: one in which a child process hangs,
while a child process experiences a bug in the other. In both classical problems,
the parent process terminates its execution correctly. To apply such possible
issues in a realistic case study, both scenarios have been transposed to a web
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server, as described throughout this work as an example. More details will be
provided in Sections 6.1, 6.2 and 6.3.

6.1 Dining Philosophers Problem

The DPP is a classic problem in computer science that Edsger Dijkstra described
in 1971 [5]. It is an example of a synchronisation problem, which arises when
multiple processes or threads access a shared resource. In the DPP, philosophers
are seated at a round table with a fork between them. To eat, a philosopher
must have both the fork to his left and the fork to his right. However, only one
philosopher can hold each fork at any given time, which can lead to a deadlock
in which all the philosophers are waiting for a fork to become available. As a
result, each process (representing a philosopher) of the system stays in a hung
state indefinitely.

This problem is useful to reproduce a plausible pattern where forked processes
stay in a hung state indefinitely without the possibility of exiting. To avoid a
process staying in a hung state and occupying resources, most fuzzers incorporate
a timeout feature, which terminates a process if its execution time exceeds a
specified limit. However, common fuzzers prevent only the parent process from
getting stuck, leaving all child processes active and potentially filling the host
memory, as is the case with AFL++.

Forkfuzz succeeds in detecting this kind of issue since it waits for all processes
from the group to terminate by detecting the exit event. Consequently, if one
or more processes remain active after the time slot expires, Forkfuzz deduces
that they are probably stuck in a deadlock or infinite loop, reports them as a
timeout, and terminates them. The tester can adjust the timeout by estimating
the plausible duration of normal execution.

6.2 Producer-Consumer Problem

The PCP [6] is another classic computer science synchronisation problem involv-
ing two types of processes: producers and consumers. Producers generate data
items and place them into a shared buffer, while the consumers remove the data
items from the buffer and process them. The problem relies on ensuring that
producers do not try to add data items to the buffer when it is full, causing a
buffer overflow. Additionally, consumers should not try to remove them from the
buffer when it is empty. In the setup proposed, the access to the shared buffer
is handled correctly and the two processes do not interfere with each other.

The parent process is designated as the producer, and, as such, it reads
strings from the standard input and sends them to the shared message queue.
Once all input strings have been sent to the queue, the parent process sends the
message quit to the queue and then terminates. The child process is designated
as the consumer and is responsible for reading messages from a shared message
queue. Once a message is received, the consumer reverses the string and checks
if it is a palindrome. However, if the condition is verified, the program crashes
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abnormally. This behaviour is simulated using the abort function. Otherwise,
the child process terminates correctly if the message is quit.

This case study outlines a situation in which the parent and child processes
are loosely coupled. In fact, after the fork call, both processes go in their separate
ways. The producer sends messages without notice if the consumer is reading.
Ultimately, it terminates its execution without waiting for the child process to
finish. Meanwhile, the consumer processes messages and possibly experiences a
bug.

However, AFL-based fuzzers in their default configuration wait for the SUT
to terminate and receive its exit status through a control pipe, which allows
them to detect only one exit code per run. This limitation can be problematic
when multiple processes are involved, such as in the PCP scenario. In contrast,
Honggfuzz and Forkfuzz detect signals on a low level, which allows them to
inspect multiple signals and identify which process crashes. This capability makes
Forkfuzz a suitable fuzzer for testing scenarios that involve multiple processes,
such as the PCP scenario, where crashes may occur in the consumer (child)
process.

6.3 Web Server

The third case study focuses on a web server, which presents different challenges
in terms of testing due to the complexity and variability of web applications.
Unlike command-line programs, web servers take input through a network socket,
so the fuzzer needs to send input over the network. To achieve this, we leveraged
the Netdriver module of Honggfuzz, which waits for the target to be available
on a predetermined port before injecting input10.

Another challenge when fuzzing a web server is caused by the underlying
protocol. Although HTTP is a stateless protocol, the server can still maintain
an internal state. For example, certain operations may require a user to be logged
in and have specific privileges. In this case study, we will not address the stateful
nature of web servers, but there is extensive literature on related works [4].

In our case study, the complexity of the web server fuzzing task increased
due to the use of a forking model for request handling. In this model, the main
process accepts incoming connections and then delegates the handling of those
connections to child processes created by fork. As a result, each child process
operates independently of the others, introducing a level of concurrency and
potential race conditions. This presents a challenge for the fuzzer, which must
be able to track and monitor the behaviour of these child processes. Failure to
do so could result in missed bugs and other issues that arise from the concurrent
execution of multiple processes.

Our setup is based on an open-source implementation in C of the described
web server model11. This server exposes different endpoints that respond to GET

10 http://blog.swiecki.net/2018/01/fuzzing-tcp-servers.html
11 https://github.com/foxweb/pico

http://blog.swiecki.net/2018/01/fuzzing-tcp-servers.html
https://github.com/foxweb/pico
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and POST methods. In particular, when the GET method is invoked on a non-
existent path, the server attempts to retrieve the corresponding file from the
public directory. However, the code has a character limit on the path length.
As a result, if a user sends a request that exceeds this limit, the server becomes
vulnerable to a buffer overflow attack.

In addition to the buffer overflow vulnerability, we have added a dangerous
request that can make the server susceptible to a Denial-of-Service (DoS) attack.
In particular, the “is_prime” POST request takes a number as input and applies
a primality test: the simple trial division algorithm [1]. This algorithm has a
complexity of O(

√
n) and, for big numbers could take several seconds or even

minutes to execute, depending on the machine it is running on. Therefore, the
role of this algorithm is to simulate a scenario in which an attacker could send
multiple requests with large inputs, which would keep the server occupied and
disrupt the service.

As expected, Forkfuzz was able to detect both issues, particularly the sec-
ond, which is challenging to identify with standard fuzzers. While timeouts are
typically included in most fuzzers, they may not be sufficient to identify issues
with forked child processes. Overall, our findings highlight the effectiveness of
Forkfuzz in detecting both crash and timeout issues both in classical and realistic
scenarios. Additional discussion follows in Section 7.

6.4 Performance

The performance of Forkfuzz was evaluated in multiple case studies, and the
results were promising. Forkfuzz is built on top of Honggfuzz, one of the most
effective coverage-guided fuzzers as reported by Fuzzbench benchmark[16]. The
fundamental difference between Forkfuzz and Honggfuzz is the management of
multiple processes.

“Fork-awareness” is upheld through a set of Process IDs (PIDS), which is
updated upon new process creation and process termination. Adding entries to
PIDS is a swift O(1) operation, while removing them, with an O(n) complexity,
marginally impacts overhead during both addition and deletion.

Note that overhead may rise in systems with numerous processes during a
single run, though this is uncommon. In summary, Forkfuzz performs comparably
to Honggfuzz, with negligible overhead on typical systems.

7 Discussion

7.1 Limitations

In many cases, the fork system call is used with the wait and waitpid functions,
forming the fork-join mechanism [18]. This mechanism involves the parent pro-
cess creating a child process for a separate task and then waiting for the child
process to complete.

Consequently, Forkfuzz does not exhibit a substantial distinction from other
fuzzers in terms of handling timeouts, since they all wait for the parent process
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to conclude. As a result, if the child processes become unresponsive, the parent
process will persist in waiting, ultimately resulting in a timeout. It is worth
noting that the AFL family of fuzzers does not inherently identify bugs within
the child process. Therefore, if the parent process does not detect misbehaviour
in the child process, AFL fuzzers will never spot the bugs.

Forkfuzz excels when testing systems with loosely-coupled processes, where
each process operates independently and follows its own distinct path. In such
scenarios, where processes operate independently without strong dependencies
or synchronisation requirements, Forkfuzz excels in automatically detecting bugs
and timeouts that may remain undetected by the individual processes within the
system. In other words, if the processes within the system are already capable
of notifying errors themselves, Forkfuzz may not provide significant additional
benefits.

An additional limitation arises from the absence of the persistent mode. Per-
sistent mode[7] is a fuzzing strategy that improves performance by running the
SUT within the same process instead of creating a new one for each test case.
Enabling this mode needs more precise management of the PIDS set, which
remains an area for future improvement.

7.2 Aggregated coverage

Forkfuzz currently employs aggregate code coverage without distinguishing indi-
vidual process contributions. Future work may investigate the benefits of sepa-
rate coverage maps per process, offering insights into their coverage and enhanc-
ing fuzzing accuracy.

Furthermore, this technique would be especially valuable for processes using
the fork-exec paradigm, where the child process is replaced with another pro-
gram [22]. Capturing separate coverage maps for multiple programs in a single
fuzzing run would allow independent coverage assessment.

7.3 Areas of improvement

Distributed Fuzzing The concept underlying this research is to conduct parallel
fuzzing of concurrent processes. Building upon this concept, it is possible to
explore concurrent processes running on different machines, thereby forming a
distributed system. As a future direction, this idea can be extended to encompass
concurrent and distributed software. The objective is to investigate whether
simultaneously fuzzing the entire system can yield improvements in terms of
performance, code coverage, and the effectiveness of bug detection.

Real-World Benchmark Forkfuzz has been evaluated through a series of simple,
yet realistic, case studies. The objective was to provide a clear explanation of
the approach while demonstrating its effectiveness. However, it is important to
note that future work will involve testing the approach on real-world systems.
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Extending Support to Non-Linux Systems Expanding Forkfuzz to support soft-
ware on non-Linux systems is another crucial direction. While Forkfuzz currently
focuses on fuzzing software using the fork system call in Linux, there is a need to
address other process creation mechanisms such as the Windows CreateProcess
function and their equivalents in various operating systems. We plan to enhance
the applicability of Forkfuzz, enabling the detection of bugs in a broader spec-
trum of software systems.

Concurrency bugs One of the major challenges in concurrent software testing
is the presence of concurrency bugs. These bugs occur due to the interleaving
of processes running concurrently, where different schedules can produce dif-
ferent results. Muzz [3] addresses this challenge by adjusting thread priorities
and manipulating execution orders to uncover potential concurrency bugs. This
approach helps in systematically exploring different execution paths and identify-
ing vulnerabilities that may only manifest under specific interleavings. As future
work, further enhancements can be made to systematically execute processes in
different orders, effectively expanding the exploration space and increasing the
chances of discovering subtle concurrency bugs.

8 Concluding remarks

Although state-of-the-art fuzzers have proven very effective in finding bugs and
timeouts in the parent process of the target system, we found that they are
somewhat limited over child processes. This paper presented Forkfuzz, a new
fuzzer based on Honggfuzz capable of inspecting child processes. Forkfuzz was
verified over three case studies, and the findings are:

– In the Dining Philosophers Problem case study, Forkfuzz identifies a timeout;
– In the Producer Consumer Problem case study, Forkfuzz detects an artificial

bug occurring in the child process;
– In the web server case study, Forkfuzz finds a buffer overflow vulnerability

and a denial of service (DOS) attack.

It is evident from our experiments that Forkfuzz serves as a valid fuzzer
for identifying bugs and timeouts in child processes. Also, it sheds light on the
importance of fuzzer awareness of the multi-process nature of the SUT.

Furthermore, we discussed limitations in current approaches, including cre-
ating harnesses and sequential process flattening using methods such as defork.
These discussions emphasise the ongoing research focus on automating fuzzing
techniques, where Forkfuzz aligns with the goal of enhancing the automation
and effectiveness of fuzzing.

Beyond our experiments, we outlined future directions addressing concur-
rency bugs and distributed system testing challenges. By systematically explor-
ing different execution orders and scheduling patterns, future work can further
enhance Forkfuzz to detect concurrency-related vulnerabilities effectively. By in-
corporating these advancements, Forkfuzz strives to enhance its capabilities and
contribute to the overall progress of automated fuzz testing methodologies.
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